Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109589, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38623335

RESUMO

Sterile pyogranulomas and heightened cytokine production are hyperinflammatory hallmarks of Chronic Granulomatous Disease (CGD). Using peritoneal cells of zymosan-treated CGD (gp91phox-/-) versus wild-type (WT) mice, an ex vivo system of pyogranuloma formation was developed to determine factors involved in and consequences of recruitment of neutrophils and monocyte-derived macrophages (MoMacs). Whereas WT cells failed to aggregate, CGD cells formed aggregates containing neutrophils initially, and MoMacs recruited secondarily. LTB4 was key, as antagonizing BLT1 blocked neutrophil aggregation, but acted only indirectly on MoMac recruitment. LTB4 upregulated CD11b expression on CGD neutrophils, and the absence/blockade of CD11b inhibited LTB4 production and cell aggregation. Neutrophil-dependent MoMac recruitment was independent of MoMac Nox2 status, BLT1, CCR1, CCR2, CCR5, CXCR2, and CXCR6. As proof of concept, CD11b-deficient CGD mice developed disrupted pyogranulomas with poorly organized neutrophils and diminished recruitment of MoMacs. Importantly, the disruption of cell aggregation and pyogranuloma formation markedly reduced proinflammatory cytokine production.

2.
Front Immunol ; 15: 1354836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404573

RESUMO

Introduction: Loss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming. Methods: We sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation. Results: More extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo. Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1ß, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo. Discussion: These data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.


Assuntos
Doença Granulomatosa Crônica , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Camundongos , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Doença Granulomatosa Crônica/terapia , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Cell Rep ; 38(2): 110222, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021097

RESUMO

Phagocytosis of apoptotic cells, termed efferocytosis, is critical for tissue homeostasis and drives anti-inflammatory programming in engulfing macrophages. Here, we assess metabolites in naive and inflammatory macrophages following engulfment of multiple cellular and non-cellular targets. Efferocytosis leads to increases in the arginine-derived polyamines, spermidine and spermine, in vitro and in vivo. Surprisingly, polyamine accumulation after efferocytosis does not arise from retention of apoptotic cell metabolites or de novo synthesis but from enhanced polyamine import that is dependent on Rac1, actin, and PI3 kinase. Blocking polyamine import prevents efferocytosis from suppressing macrophage interleukin (IL)-1ß or IL-6. This identifies efferocytosis as a trigger for polyamine import and accumulation, and imported polyamines as mediators of efferocytosis-induced immune reprogramming.


Assuntos
Citofagocitose/fisiologia , Macrófagos/metabolismo , Poliaminas/metabolismo , Animais , Apoptose/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Imunomodulação , Inflamação/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Espermidina/metabolismo , Espermina/metabolismo
4.
Blood ; 139(11): 1707-1721, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34699591

RESUMO

Loss of NADPH oxidase activity leads to altered phagocyte responses and exaggerated inflammation in chronic granulomatous disease (CGD). We sought to assess the effects of Nox2 absence on monocyte-derived macrophages (MoMacs) in gp91phox-/y mice during zymosan-induced peritonitis. MoMacs from CGD and wild-type (WT) peritonea were characterized over time after zymosan injection. Although numbers lavaged from both genotypes were virtually identical, there were marked differences in maturation: newly recruited WT MoMacs rapidly enlarged and matured, losing Ly6C and gaining MHCII, CD206, and CD36, whereas CGD MoMacs remained small and were mostly Ly6C+MHCII-. RNA-sequencing analyses showed few intrinsic differences between genotypes in newly recruited MoMacs but significant differences with time. WT MoMacs displayed changes in metabolism, adhesion, and reparative functions, whereas CGD MoMacs remained inflammatory. PKH dye labeling revealed that although WT MoMacs were mostly recruited within the first 24 hours and remained in the peritoneum while maturing and enlarging, CGD monocytes streamed into the peritoneum for days, with many migrating to the diaphragm where they were found in fibrin(ogen) clots surrounding clusters of neutrophils in nascent pyogranulomata. Importantly, these observations seemed to be driven by milieu: adoptive transfer of CGD MoMacs into inflamed peritonea of WT mice resulted in immunophenotypic maturation and normal behavior, whereas altered maturation/behavior of WT MoMacs resulted from transfer into inflamed peritonea of CGD mice. In addition, Nox2-deficient MoMacs behaved similarly to their Nox2-sufficient counterparts within the largely WT milieu of mixed bone marrow chimeras. These data show persistent recruitment with fundamental failure of MoMac maturation in CGD.


Assuntos
Doença Granulomatosa Crônica , Animais , Doença Granulomatosa Crônica/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo
5.
PLoS One ; 13(4): e0196120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29672589

RESUMO

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, are increasingly present in soft tissue infections and chronic lung diseases, including cystic fibrosis, and infections are characterized by growth in neutrophil-rich environments. M. abscessus is observed as two distinct smooth and rough morphotypes. The environmental smooth morphotype initiates infection and has a relatively limited ability to activate neutrophils. The rough morphotype has increased virulence and immunogenicity. However, the neutrophil response to the rough morphotype has not been explored. Killing of the smooth and rough strains, including cystic fibrosis clinical isolates, was equivalent. Neutrophil uptake of M. abscessus was similar between morphotypes. Mechanistically, both rough and smooth morphotypes enhanced neutrophil reactive oxygen species generation but inhibition of NADPH oxidase activity did not affect M. abscessus viability. However, inhibition of phagocytosis and extracellular traps reduced killing of the smooth morphotype with lesser effects against the rough morphotype. Neutrophils treated with M. abscessus released a heat-labile mycobactericidal activity against the rough morphotype, but the activity was heat-tolerant against the smooth morphotype. Overall, M. abscessus stimulates ineffective neutrophil reactive oxygen species generation, and key mechanisms differ in killing of the smooth (phagocytosis-dependent, extracellular traps, and heat-tolerant secreted factor) and rough (extracellular traps and a heat-labile secreted factor) morphotypes. These studies represent an essential advancement in understanding the host response to M. abscessus, and help explain the recalcitrance of infection.


Assuntos
Citotoxicidade Imunológica , Mycobacterium abscessus/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Citocinas/metabolismo , Espaço Extracelular/imunologia , Espaço Extracelular/metabolismo , Espaço Extracelular/microbiologia , Armadilhas Extracelulares , Humanos , Espaço Intracelular/imunologia , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Viabilidade Microbiana/imunologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Neutrófilos/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L69-L82, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28935638

RESUMO

Microparticles are a newly recognized class of mediators in the pathophysiology of lung inflammation and injury, but little is known about the factors that regulate their accumulation and clearance. The primary objective of our study was to determine whether alveolar macrophages engulf microparticles and to elucidate the mechanisms by which this occurs. Alveolar microparticles were quantified in bronchoalveolar fluid of mice with lung injury induced by LPS and hydrochloric acid. Microparticle numbers were greatest at the peak of inflammation and declined as inflammation resolved. Isolated, fluorescently labeled particles were placed in culture with macrophages to evaluate ingestion in the presence of endocytosis inhibitors. Ingestion was blocked with cytochalasin D and wortmannin, consistent with a phagocytic process. In separate experiments, mice were treated intratracheally with labeled microparticles, and their uptake was assessed though microscopy and flow cytometry. Resident alveolar macrophages, not recruited macrophages, were the primary cell-ingesting microparticles in the alveolus during lung injury. In vitro, microparticles promoted inflammatory signaling in LPS primed epithelial cells, signifying the importance of microparticle clearance in resolving lung injury. Microparticles were found to have phosphatidylserine exposed on their surfaces. Accordingly, we measured expression of phosphatidylserine receptors on macrophages and found high expression of MerTK and Axl in the resident macrophage population. Endocytosis of microparticles was markedly reduced in MerTK-deficient macrophages in vitro and in vivo. In conclusion, microparticles are released during acute lung injury and peak in number at the height of inflammation. Resident alveolar macrophages efficiently clear these microparticles through MerTK-mediated phagocytosis.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Micropartículas Derivadas de Células/fisiologia , Inflamação/patologia , Macrófagos Alveolares/fisiologia , Fagocitose , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/fisiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Apoptose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Receptor Tirosina Quinase Axl
8.
Am J Respir Cell Mol Biol ; 57(3): 294-306, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28421818

RESUMO

Two populations of alveolar macrophages (AMs) coexist in the inflamed lung: resident AMs that arise during embryogenesis, and recruited AMs that originate postnatally from circulating monocytes. The objective of this study was to determine whether origin or environment dictates the transcriptional, metabolic, and functional programming of these two ontologically distinct populations over the time course of acute inflammation. RNA sequencing demonstrated marked transcriptional differences between resident and recruited AMs affecting three main areas: proliferation, inflammatory signaling, and metabolism. Functional assays and metabolomic studies confirmed these differences and demonstrated that resident AMs proliferate locally and are governed by increased tricarboxylic acid cycle and amino acid metabolism. Conversely, recruited AMs produce inflammatory cytokines in association with increased glycolytic and arginine metabolism. Collectively, the data show that even though they coexist in the same environment, inflammatory macrophage subsets have distinct immunometabolic programs and perform specialized functions during inflammation that are associated with their cellular origin.


Assuntos
Lesão Pulmonar Aguda/patologia , Macrófagos/patologia , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/genética , Animais , Linhagem da Célula , Proliferação de Células , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Pneumonia/complicações , Pneumonia/genética , Pneumonia/patologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA
9.
Am J Respir Cell Mol Biol ; 57(1): 66-76, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28257233

RESUMO

The current paradigm in macrophage biology is that some tissues mainly contain macrophages from embryonic origin, such as microglia in the brain, whereas other tissues contain postnatal-derived macrophages, such as the gut. However, in the lung and in other organs, such as the skin, there are both embryonic and postnatal-derived macrophages. In this study, we demonstrate in the steady-state lung that the mononuclear phagocyte system is comprised of three newly identified interstitial macrophages (IMs), alveolar macrophages, dendritic cells, and few extravascular monocytes. We focused on similarities and differences between the three IM subtypes, specifically, their phenotype, location, transcriptional signature, phagocytic capacity, turnover, and lack of survival dependency on fractalkine receptor, CX3CR1. Pulmonary IMs were located in the bronchial interstitium but not the alveolar interstitium. At the transcriptional level, all three IMs displayed a macrophage signature and phenotype. All IMs expressed MER proto-oncogene, tyrosine kinase, CD64, CD11b, and CX3CR1, and were further distinguished by differences in cell surface protein expression of CD206, Lyve-1, CD11c, CCR2, and MHC class II, along with the absence of Ly6C, Ly6G, and Siglec F. Most intriguingly, in addition to the lung, similar phenotypic populations of IMs were observed in other nonlymphoid organs, perhaps highlighting conserved functions throughout the body. These findings promote future research to track four distinct pulmonary macrophages and decipher the division of labor that exists between them.


Assuntos
Pulmão/citologia , Macrófagos/citologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Macrófagos Alveolares/citologia , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Fagócitos/citologia , Fagócitos/metabolismo , Fenótipo , Transcrição Gênica
10.
Hepatol Commun ; 1(8): 765-779, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29404493

RESUMO

Hepatic macrophages (MΦs) are important in the development and progression of alcoholic liver disease (ALD). This study investigates the role of gp91phox (nicotinamide adenine dinucleotide phosphate oxidase 2) in the severity of ALD and specifically in regulating hepatic MΦ efferocytic capability and the subsequent reprogramming associated with resolution of inflammation. After 4 weeks of ethanol feeding, more severe ALD developed in gp91phox-/- mice than in wild-type (WT) C57Bl/6J mice, evidenced by increased liver injury and inflammation. This phenomenon was not sex dependent, and thus the majority of experiments were performed with female mice. While total hepatic MΦ numbers did not differ between genotypes, hepatic infiltrating MΦs (IMs) were slightly more numerous in gp91phox-/- mice, and both IMs and resident Kupffer cells displayed enhanced proinflammatory and reduced tissue-restorative programming compared with these cells from WT mice. The ratio of proinflammatory IMs with higher expression of Ly6C (Ly6Chi) to anti-inflammatory IMs with lower expression of Ly6C (Ly6Clow) was significantly higher in gp91phox-/- mice compared to WT mice. Greater numbers of apoptotic cells accumulated in the liver of gp91phox-/- mice compared to WT mice, and receptors for binding and engulfing apoptotic cells were expressed at much lower levels on both Kupffer cells and IMs of gp91phox-/- mice. Interactions with apoptotic cells (binding and engulfment) in vitro were significantly fewer for gp91phox-/- MΦs than for WT MΦs, resulting in diminished expression of tissue restorative mediators by hepatic MΦs of gp91phox-/- mice. Conclusion: gp91phox plays a critical role in the differentiation of proinflammatory hepatic MΦs to a tissue-restorative phenotype, likely through programming for efferocytosis, and thereby lessens the severity of ALD. These findings enhance our understanding of the tissue environmental cues that regulate MΦ phenotypes. This knowledge could help in designing MΦ-targeting strategies to prevent and treat ALD. (Hepatology Communications 2017;1:765-779).

11.
Microbiol Spectr ; 4(6)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27837740

RESUMO

Given the dual and intrinsically contradictory roles of myeloid cells in both protective and yet also damaging effects of inflammatory and immunological processes, we suggest that it is important to consider the mechanisms and circumstances by which these cells are removed, either in the normal unchallenged state or during inflammation or disease. In this essay we address these subjects from a conceptual perspective, focusing as examples on four main myeloid cell types (neutrophils, monocytes, macrophages, and myeloid dendritic cells) and their clearance from the circulation or from naive and inflamed tissues. While the primary clearance process appears to involve endocytic uptake into macrophages, various tissue cell types can also recognize and remove dying cells, though their overall quantitative contribution is unclear. In fact, surprisingly, given the wealth of study in this area over the last 30 years, our conclusion is that we are still challenged with a substantial lack of mechanistic and regulatory understanding of when, how, and by what mechanisms migratory myeloid cells come to die and are recognized as needing to be removed, and indeed the precise processes of uptake of either the intact or fragmented cells. This reflects the extreme complexity and inherent redundancy of the clearance processes and argues for substantial investigative effort in this arena. In addition, it leads us to a sense that approaches to significant therapeutic modulation of selective myeloid clearance are still a long way off.


Assuntos
Células Mieloides/fisiologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Movimento Celular/imunologia , Doença Granulomatosa Crônica/imunologia , Doença Granulomatosa Crônica/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Linfonodos/imunologia , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/patologia , Células Mieloides/classificação , Células Mieloides/citologia , Células Mieloides/imunologia
12.
J Immunol ; 197(4): 1425-34, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402702

RESUMO

Proinflammatory consequences have been described for lysophosphatidylcholine, a lipid product of cellular injury, signaling via the G protein-coupled receptor G2A on myeloid and lymphoid inflammatory cells. This prompted the hypothesis that genetic deletion of G2A would limit intestinal inflammation in a mouse model of colitis induced by dextran sodium sulfate. Surprisingly, G2A(-/-) mice exhibited significantly worsened colitis compared with wild-type mice, as demonstrated by disease activity, colon shortening, histology, and elevated IL-6 and IL-5 in colon tissues. Investigation of inflammatory cells recruited to inflamed G2A(-/-) colons showed significantly more TNF-α(+) and Ly6C(hi)MHCII(-) proinflammatory monocytes and eosinophils than in wild-type colons. Both monocytes and eosinophils were pathogenic as their depletion abolished the excess inflammation in G2A(-/-) mice. G2A(-/-) mice also had less IFN-γ in inflamed colon tissues than wild-type mice. Fewer CD4(+) lymphocytes were recruited to inflamed G2A(-/-) colons, and fewer colonic lymphocytes produced IFN-γ upon ex vivo stimulation. Administration of IFN-γ to G2A(-/-) mice during dextran sodium sulfate exposure abolished the excess colitic inflammation and reduced colonic IL-5 and eosinophil numbers to levels seen in wild-type mice. Furthermore, IFN-γ reduced the numbers of TNF-α(+) monocyte and enhanced their maturation from Ly6C(hi)MHCII(-) to Ly6C(int)MHCII(+) Taken together, the data suggest that G2A signaling serves to dampen intestinal inflammation via the production of IFN-γ, which, in turn, enhances monocyte maturation to a less inflammatory program and ultimately reduces eosinophil-induced injury of colonic tissues.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Colite/patologia , Interferon gama/biossíntese , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Am J Respir Crit Care Med ; 193(6): 614-26, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26551758

RESUMO

RATIONALE: The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. OBJECTIVES: Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. METHODS: We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. MEASUREMENTS AND MAIN RESULTS: We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. CONCLUSIONS: Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.


Assuntos
Citometria de Fluxo , Pulmão/imunologia , Linfonodos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Fagócitos/imunologia , Adulto , Cadáver , Feminino , Humanos , Masculino
15.
Blood ; 126(11): 1357-66, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26232173

RESUMO

Alveolar macrophages (AMs) reside on the luminal surfaces of the airways and alveoli where they maintain host defense and promote alveolar homeostasis by ingesting inhaled particulates and regulating inflammatory responses. Recent studies have demonstrated that AMs populate the lungs during embryogenesis and self-renew throughout life with minimal replacement by circulating monocytes, except under extreme conditions of depletion or radiation injury. Here we demonstrate that on a global scale, environment appears to dictate AM development and function. Indeed, transcriptome analysis of embryonic host-derived and postnatal donor-derived AMs coexisting within the same mouse demonstrated >98% correlation and overall functional analyses were similar. However, we also identified several genes whose expression was dictated by origin rather than environment. The most differentially expressed gene not altered by environment was Marco, a gene recently demonstrated to have enhancer activity in embryonic-derived but not postnatal-derived tissue macrophages. Overall, we show that under homeostatic conditions, the environment largely dictates the programming and function of AMs, whereas the expression of a small number of genes remains linked to the origin of the cell.


Assuntos
Macrófagos Alveolares/citologia , Macrófagos Alveolares/metabolismo , Animais , Transplante de Medula Óssea , Linhagem da Célula/genética , Microambiente Celular/genética , Citocinas/biossíntese , Perfilação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose/genética , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/metabolismo , Receptores Imunológicos/genética , Quimeras de Transplante
16.
J Allergy Clin Immunol ; 135(2): 517-527.e12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25498313

RESUMO

BACKGROUND: Deficient production of reactive oxygen species (ROS) by the phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase in patients with chronic granulomatous disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. Peroxisome proliferator-activated receptor (PPAR) γ agonists, including pioglitazone, approved for type 2 diabetes therapy alter cellular metabolism and can heighten ROS production. It was hypothesized that pioglitazone treatment of gp91(phox-/-) mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of Staphylococcus aureus, a significant pathogen in patients with this disorder. OBJECTIVES: We sought to determine whether pioglitazone treatment of gp91(phox-/-) mice enhanced phagocyte oxidant production and host defense. METHODS: Wild-type and gp91(phox-/-) mice were treated with the PPARγ agonist pioglitazone, and phagocyte ROS and killing of S aureus were investigated. RESULTS: As demonstrated by 3 different ROS-sensing probes, short-term treatment of gp91(phox-/-) mice with pioglitazone enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS. Findings were replicated in human monocytes from patients with CGD after ex vivo pioglitazone treatment. Importantly, although mitochondrial (mt)ROS were deficient in gp91(phox-/-) phagocytes, their restoration with treatment significantly enabled killing of S aureus both ex vivo and in vivo. CONCLUSIONS: Together, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD.


Assuntos
Doença Granulomatosa Crônica/imunologia , Doença Granulomatosa Crônica/metabolismo , Mitocôndrias/metabolismo , Oxidantes/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Tiazolidinedionas/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/deficiência , Neutrófilos/imunologia , Neutrófilos/metabolismo , PPAR gama/metabolismo , Fagócitos/microbiologia , Fagocitose/imunologia , Pioglitazona , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/imunologia , Superóxidos/metabolismo
17.
Nat Rev Drug Discov ; 13(11): 852-69, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25359381

RESUMO

Hypoxia-inducible factors (HIFs) are stabilized during adverse inflammatory processes associated with disorders such as inflammatory bowel disease, pathogen infection and acute lung injury, as well as during ischaemia-reperfusion injury. HIF stabilization and hypoxia-induced changes in gene expression have a profound impact on the inflamed tissue microenvironment and on disease outcomes. Although the mechanism that initiates HIF stabilization may vary, the final molecular steps that control HIF stabilization converge on a set of oxygen-sensing prolyl hydroxylases (PHDs) that mark HIFs for proteasomal degradation. PHDs are therefore promising therapeutic targets. In this Review, we discuss the emerging potential and associated challenges of targeting the PHD-HIF pathway for the treatment of inflammatory and ischaemic diseases.


Assuntos
Hipóxia/tratamento farmacológico , Inflamação/tratamento farmacológico , Isquemia/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Hipóxia/metabolismo , Inflamação/metabolismo , Isquemia/metabolismo , Prolil Hidroxilases/metabolismo
18.
Antimicrob Agents Chemother ; 58(11): 6851-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182651

RESUMO

Pseudomonas aeruginosa is a major pathogen in cystic fibrosis (CF) lung disease. Children with CF are routinely exposed to P. aeruginosa from the natural environment, and by adulthood, 80% of patients are chronically infected. P. aeruginosa in the CF airway exhibits a unique biofilm-like structure, where it grows in small clusters or aggregates of bacteria in association with abundant polymers of neutrophil-derived components F-actin and DNA, among other components. These aggregates differ substantially in size and appearance compared to surface-attached in vitro biofilm models classically utilized for studies but are believed to share properties of surface-attached biofilms, including antibiotic resistance. However, little is known about the formation and function of surface-independent modes of biofilm growth, how they might be eradicated, and quorum sensing communication. To address these issues, we developed a novel in vitro model of P. aeruginosa aggregates incorporating human neutrophil-derived products. Aggregates grown in vitro and those found in CF patients' sputum samples were morphologically similar; viable bacteria were distributed in small pockets throughout the aggregate. The lasA quorum sensing gene was differentially expressed in the presence of neutrophil products. Importantly, aggregates formed in the presence of neutrophils acquired resistance to tobramycin, which was lost when the aggregates were dispersed with DNase, and antagonism of tobramycin and azithromycin was observed. This novel yet simple in vitro system advances our ability to model infection of the CF airway and will be an important tool to study virulence and test alternative eradication strategies against P. aeruginosa.


Assuntos
Metaloproteases/biossíntese , Neutrófilos/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/genética , Fatores de Virulência/biossíntese , Antibacterianos/farmacologia , Azitromicina/farmacologia , Biofilmes , Fibrose Cística/complicações , Farmacorresistência Bacteriana Múltipla , Humanos , Metaloproteases/genética , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Escarro/microbiologia , Tobramicina/farmacologia , Fatores de Virulência/genética
19.
COPD ; 11(3): 277-89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24182349

RESUMO

RATIONALE: Bone marrow derived progenitor cells participate in the repair of injured vessels. The lungs of individuals with emphysema have reduced alveolar capillary density and increased endothelial apoptosis. We hypothesized that circulating levels of endothelial and hematopoietic progenitor cells would be reduced in this group of patients. OBJECTIVES: The goal of this study was to measure circulating levels of endothelial progenitor cells (EPCs) and hematopoietic progenitor cells (HPCs) in subjects with COPD and to determine if progenitor levels correlated with disease severity and the presence of emphysema. METHODS: Peripheral blood mononuclear cells were isolated from 61 patients with COPD and 32 control subjects. Levels of EPCs (CD45(dim) CD34+) and HPCs (CD45(+) CD34(+) VEGF-R2(+)) were quantified using multi-parameter flow cytometry. Progenitor cell function was assessed using cell culture assays. All subjects were evaluated with spirometry and CT scanning. MEASUREMENTS AND MAIN RESULTS: HPC levels were reduced in subjects with COPD compared to controls, whereas circulating EPC levels were similar between the two groups. HPC levels correlated with severity of obstruction and were lowest in subjects with severe emphysema. These associations remained after correction for factors known to affect progenitor cell levels including age, smoking status, the use of statin medications and the presence of coronary artery disease. The ability of mononuclear cells to form endothelial cell colony forming units (EC-CFU) was also reduced in subjects with COPD. CONCLUSIONS: HPC levels are reduced in subjects with COPD and correlate with emphysema phenotype and severity of obstruction. Reduction of HPCs may disrupt maintenance of the capillary endothelium, thereby contributing to the pathogenesis of COPD.


Assuntos
Células Progenitoras Endoteliais , Células-Tronco Hematopoéticas , Doença Pulmonar Obstrutiva Crônica/sangue , Enfisema Pulmonar/sangue , Índice de Gravidade de Doença , Antígeno AC133 , Idoso , Antígenos CD/análise , Antígenos CD34/análise , Contagem de Células , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Células Progenitoras Endoteliais/química , Feminino , Volume Expiratório Forçado , Glicoproteínas/análise , Células-Tronco Hematopoéticas/química , Células-Tronco Hematopoéticas/fisiologia , Humanos , Antígenos Comuns de Leucócito/análise , Masculino , Pessoa de Meia-Idade , Peptídeos/análise , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/complicações , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise , Capacidade Vital
20.
Am J Respir Cell Mol Biol ; 50(4): 825-37, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24325577

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a relentless, fibrotic parenchymal lung disease in which alternatively programmed macrophages produce profibrotic molecules that promote myofibroblast survival and collagen synthesis. Effective therapies to treat patients with IPF are lacking, and conventional therapy may be harmful. We tested the hypothesis that therapeutic lung delivery of the proinflammatory cytokine tumor necrosis factor (TNF)-α into wild-type fibrotic mice would reduce the profibrotic milieu and accelerate the resolution of established pulmonary fibrosis. Fibrosis was assessed in bleomycin-instilled wild-type and TNF-α(-/-) mice by measuring hydroxyproline levels, static compliance, and Masson's trichrome staining. Macrophage infiltration and programming status was assessed by flow cytometry of enzymatically digested lung and in situ immunostaining. Pulmonary delivery of TNF-α to wild-type mice with established pulmonary fibrosis was found to reduce their fibrotic burden, to improve lung function and architecture, and to reduce the number and programming status of profibrotic alternatively programmed macrophages. In contrast, fibrosis and alternative macrophage programming were prolonged in bleomycin-instilled TNF-α(-/-) mice. To address the role of the reduced numbers of alternatively programmed macrophages in the TNF-α-induced resolution of established pulmonary fibrosis, we conditionally depleted macrophages in MAFIA (MAcrophage Fas-Induced Apoptosis) mice. Conditional macrophage depletion phenocopied the resolution of established pulmonary fibrosis observed after therapeutic TNF-α delivery. Taken together, our results show for the first time that TNF-α is involved in the resolution of established pulmonary fibrosis via a mechanism involving reduced numbers and programming status of profibrotic macrophages. We speculate that pulmonary delivery of TNF-α or augmenting its signaling pathway represent a novel therapeutic strategy to resolve established pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Bleomicina , Células Cultivadas , Modelos Animais de Doenças , Hidroxiprolina/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Complacência Pulmonar , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Recuperação de Função Fisiológica , Indução de Remissão , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/genética , Receptor fas/genética , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...